Friday, 24. March 2017 You are not logged in... [Log In]
 

Incineration


Municipal solid waste in the furnace of a moving grate incinerator

Thermal treatment is a solution for treating nonrecyclable and nonreusable waste in an environmental and economical friendly way. Thermal treatment reduces the volume and mass of the waste and inerts the hazardous components, while at the same time generating thermal and/or electrical energy and minimizing pollutant emissions to air and water.

Waste Incineration, pyrolysis and gasification are the possible thermal treatment processes. In modern European waste management waste incineration plays the absolute dominant role. The processes result in residual products from the waste as well as products resulting from flue gas cleaning additives, which afterwards have to be deposited at a controlled site such as a landfill or a mine. After thermal treatment ferrous and non-ferrous metals can be recovered and recycled. Also the grate ash or slag can be recovered for building purposes. Nutrients and organic matter are destroyed and cannot be recovered after thermal treatment.

In the European Union, Directive 2000/76/EC on the Incineration of Waste regulates waste incineration facilities and sets the limits for emissions into the atmosphere and discharge limits into the water. The objective of the Directive is to prevent or reduce, as much as possible, the pollution caused by incineration or co-incineration of waste to the air, water and soil that may affect human health.

See Also


 
Incineration
Pyrolysis
Gasification
Co-Incineration
Flue Gas Cleaning
Waste-to-Energy (WtE) facility in Canton Lucerne

Professional articles about: incineration plants on their way to thermal treatment plants

The Added Value of the Balance Method for Waste-to-Energy Operators and National Authorities
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
Different directives of the European Union may require operators of Waste to Energy WTE plants to monitor the composition of their waste feed with respect to the Content of biomass and fossil organic matter. The mass fractions of both materials are not only of relevance for the amount of fossil and thus climate relevant CO2 emissions of the plant, but also for the ratio of renewable energy generated, as biomass in wastes is considered as renewable energy source.

Development of Waste Management in the Arab Region
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
The Department of Waste Management and Material Flow of the University of Rostock has been active in Arab countries for over 20 years, and has initiated, carried out and scientifically supervised numerous projects. Waste management and material flow is an important theme in the field of German development cooperation in the MENA regions and has gained in significance in recent years.

Regenerative Thermal Oxidation in the Cement Industry – Technology and Operation –
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
The cement industry plays a pivotal role in meeting society’s needs for housing and infrastructure. Cement is one of the most important and widely used commodities in the world and is therefore a key ingredient of economic development. Current world production of cement is well above 4,500 million tons per year and growing.

International Experience of Risks Sharing between Public and Private Entities in Energy-from-Waste Plants Construction
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
Imagine that you are the mayor of a city named Metropolis and are in Charge of School logistics. Before doing so, you might have to ask yourself a few essential questions. What kind of transportation will you provide? Who will it benefit: students, staff or both? Where will the service be provided? When will it be provided: in the evening, morning? And finally, how much will it cost? All these essential questions need to be answered before starting to implement this project and to buy your buses. By doing so, planning, financing, building and operating the chosen mean of Transportation will become an easier task. After that, your political decisions will direct the choice of implication of private sector on the different aspects of your project.

Enhancing of the Energy Efficiency of an Existing Waste Incineration Plant by Retrofitting with a District Heating Network
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
The German Cycle Economy Act (Kreislaufwirtschaftsgesetz KrWG) and discussions on the turn of local energy policies led to intensive examination of options for optimising utilisation of heat produced by the waste incineration plant (MKW) in Weißenhorn. This has been carried out by the waste management firm(Abfallwirtschaftsbetrieb – AWB) of the district of Neu-Ulm over a long period of time. This was also prompted by knowledge that utilisation of already generated energy in the form of combined heat and power generation (CHP) is one of the most efficient ways of achieving climate protection targets. This results from considering which courses of action are available for climate protection.

Use of a Fabric Filter for the Sorption – What Has to be Considered? – Experiences and Solutions –
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
In almost all flue gas cleaning systems installed at WtE-plants, the fabric filters are central components. A good example for this is the conditioned dry sorption process which is currently preferentially used in Europe. Within the filter not only the particles and the particulate heavy metals are separated from the gas flow, but also all reaction products resulting from the separation of gaseous pollutants such as HF, HCl, SOx, heavy metals and in this respect particularly Hg as well as PCDD/PCDF. In addition to this the fabric filter constitutes an excellent reaction chamber with high additive powder density in the filter cake.

New Waste-to-Energy Facility Energy Works Hull, United Kingdom
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
Energy Works Hull (the Project) is a milestone project for the UK’s waste and renewable energy sector. It will be one of the largest gasification facilities receiving MSW in the UK, indeed in Europe. It is one of the first advanced conversion technology Projects to receive its renewable electricity subsidies through a Contract for Difference, the mechanism by which the UK Government determined to move from Renewable Obligation Certificates following its Electricity Market Reform process. It also plays a significant part of the urban regeneration of the City of Hull. The level of community engagement and benefit has resulted in the project receiving a GBP19.9M grant from the European Union’s Regional Development Fund.

Review of the Best Available Techniques Reference Document (BREF) for Waste Incineration – What is the Current Status?
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
The Best Available Techniques Reference Documents (BREF) are a central point of technical environmental protection in Europe. This involves connected to the IED a higher liability of the BREF because they are updated regularly. Even their further implementation and monitoring at the national level were laid down precisely.

Survey on Synergies for Improved Ash Treatment at Several Bavarian Waste-to-Energy Plants
© TK Verlag - Fachverlag für Kreislaufwirtschaft (12/2015)
State-of-the-art Waste-to-Energy plants are reducing the volume of municipal and commercial waste as well as generating electric power and district heating. This survey concentrates on bottom ash treatment and utilization from a wet discharge process all Bavarian Waste-to-Energy – WtE – plants have in common.

New Developments of an Effective SNCR Control System Incorporating the NOx Mass Flow Profile
© TK Verlag - Fachverlag für Kreislaufwirtschaft (12/2015)
The NOx reduction rates which have been achieved in recent years using non-catalytic technologies (SNCR) have proved to be reliable even in applications which were believed to work only with the more costly SCR process in the past. In the meantime, SNCR has advanced to be the Best Available Technology (BAT) in grate-fired combustion plants.

<  1  2  3  4  5 . . . . >


BEST PRACTICE

Waste-to-Energy (WtE) facility

Renergia, a brand new Waste-to-Energy (WtE) facility opened in Canton Lucerne, shows that Waste-to-Energy can provide reliable heat for industries.

Category: Incineration / Waste-to-Energy plant
Executing firm: Renergia Zentralschweiz AG

MBT Ljubljana, Slovenia

In Slovenia arises one of the largest and most modern waste treatment plants in Europe.

Category: Recycling / MBT
Executing firm: STRABAG AG

Flue Gas Cleaning

The final unit of the incineration plant is one of the most important parts as it has the objective of cleaning the air pollutants produced.

Category: Incineration
Executing firm: ete.a - Ingenieurgesellschaft für Energie– und Umweltengineering & Beratung mbH

Batch Dry Fermentation

The biogas produced from the waste can be converted in a CHP to electrical and thermal energy or fed as processed bio-methane into the natural gas grid or used as fuel (CNG).

Category: Recycling / Fermentation
Executing firm: BEKON Energy Technologies Co. & KG

MBT Warsaw, Poland

The Bio-Dry™ system is a static, aerated and flexibly enclosed reactor for the biological drying of various solid waste matters containing some biodegradable contents.

Category: Recycling / MBT
Executing firm: Convaero GmbH

 
  Advertise with us | Sitemap | Contact | Legal © 2009, WtERT GmbH