Tuesday, 27. June 2017 You are not logged in... [Log In]

Assessing the Resource Efficiency of Biorefineries Using Organic Residues - Methodology and Examples

The IEA Bioenergy Task 42 “Biorefining” has the following definition on biorefining: “Biorefining is the sustainable processing of biomass into a spectrum of bio-based products (food, feed, chemicals, and materials) and bioenergy (biofuels, power and/or heat)”. Various types of organic residues are a sustainable resource that offers great opportunities for a comprehensive product portfolio to satisfy the different needs in a future BioEconomy.

Worldwide many different residue based biorefining concepts are investigated and realized. As the development status and the perspectives for implementation and development of these biorefineries are quite different a “Biorefinery Fact Sheet” is developed for the uniform and compact description of the main characteristics of these biorefineries. Starting with a technical description and the biorefinery classification scheme the mass and energy balance is calculated for the most reasonable production capacity to receive key parameters on energy and material efficiencies. Then the three dimensions – economic, environmental and social - of sustainability are assessed on a life cycle basis and compared to conventional systems. All these information and data are presented in the “Biorefinery Fact Sheet”.

The “Biorefinery Fact Sheets” consist of three parts: Part A: Biorefinery plant; Part B: Value chain assessment in comparison to conventional reference system and Annex: Methodology of sustainability assessment and data. The “Biorefinery Fact Sheets” are initially applied for a first selection of 20 interesting biorefinery systems identified by IEA (International Agency) Bioenergy Task 42, of which five cases are based on organic residues. Here the practical application is demonstrated on a four-platform (biogas, green juice, green fibers, electricity & heat) biorefinery using grass silage and food residues for bioplastic, insulation material, fertilizer and electricity. Based on these fact sheets an easy and uniform comparison of the different residue based biorefinery concepts is possible. The “Biorefinery Fact Sheet” assists various stakeholders in finding their position on residue based biorefining in a future BioEconomy. Further fact sheets are under preparation as part of a continuous process of stakeholder involvement.

Copyright: © Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben
Source: Recy & Depotech 2016 (November 2016)
Pages: 8
Price: € 4,00
Autor: DR. techn. Gerfried Jungmeier
Maria Hingsamer
Dr. Rene van Ree

  This article can be purchased via our partner ASK-EU.   


Waste-to-Energy (WtE) facility

Renergia, a brand new Waste-to-Energy (WtE) facility opened in Canton Lucerne, shows that Waste-to-Energy can provide reliable heat for industries.

Category: Incineration / Waste-to-Energy plant
Executing firm: Renergia Zentralschweiz AG

MBT Ljubljana, Slovenia

In Slovenia arises one of the largest and most modern waste treatment plants in Europe.

Category: Recycling / MBT
Executing firm: STRABAG AG

Flue Gas Cleaning

The final unit of the incineration plant is one of the most important parts as it has the objective of cleaning the air pollutants produced.

Category: Incineration
Executing firm: ete.a - Ingenieurgesellschaft für Energie– und Umweltengineering & Beratung mbH

Batch Dry Fermentation

The biogas produced from the waste can be converted in a CHP to electrical and thermal energy or fed as processed bio-methane into the natural gas grid or used as fuel (CNG).

Category: Recycling / Fermentation
Executing firm: BEKON Energy Technologies Co. & KG

MBT Warsaw, Poland

The Bio-Dry™ system is a static, aerated and flexibly enclosed reactor for the biological drying of various solid waste matters containing some biodegradable contents.

Category: Recycling / MBT
Executing firm: Convaero GmbH

  Advertise with us | Sitemap | Contact | Legal © 2009, WtERT GmbH