Tuesday, 27. June 2017 You are not logged in... [Log In]
 

Biological Treatment


2-Stage Wet Fermentation Plant in Kirchstockach, Germany.

The representative average molecular formula, excluding nitrogen and other minor components, of biodegradable waste is C6H10O4. In Europe, this type of waste comprises some 50 – 65 percent of the waste composition and has average water content between 15 – 70 percent. Depending on the water content, the biodegradable waste can be divided into two groups: dry organic waste (e.g. yard waste, textiles, dry organic production waste, wood) and wet organic waste (e.g. food and canteen waste, fruits and vegetables, wet and liquid organic production waste).

Energy from the wet organic waste fraction can be obtained by fermenting it to produce biogas and then combusting the biogas to generate renewable energy or treating it to produce bio methane. During the fermentation process microorganisms decompose the available organic matter, reducing the volume and producing compost. The fermentation produces mainly CH4 and CO2 gas and a compost product suitable after further treatment as a soil enhancer.

Depending on the water content in the digester, the anaerobic digestion process can be classified into wet and dry fermentation. Wet fermentation refers to total solid content in the Digestor with less than 12 percent of dry matter, while dry fermentation refers to digester feed with 30 percent of dry matter or more.

Other biological treatment processes are the production of biochar or liquid fuel as well as composting.

See Also


Anaerobic Digestion Process
Mechanical Biological Treatment - MBT
Batch Dry Fermentation
Wet Anaerobic Digestion Plant
Refuse Derived Fuels - solid recovered fuels for the cement industry
Liquid Fuel
MBT Warsaw, Poland
 
Professional articles about: waste collection, recycling, biological treatment,  saving energy by smart production with raw materials etc.
 

Resource Recovery from Waste Using the Input Flexibility of Waste Gasification Technology
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
Nowadays, gasification of waste or biomass is becoming the great interest all over the world. Especially, gasification of municipal solid waste (MSW) has been well-researched in Japan. The development of MSW gasification technology was started in the 1970s in Japan because of oil crisis. Several technologies have been researched and developed. The Direct Melting System (DMS), which is the gasification and melting technology developed by Nippon Steel & Sumikin Engineering Co., Ltd., is one of the developed waste gasification technologies in this era. This technology was introduced for commercial use in Kamaishi City, Japan in 1979. As well as this waste technology, other gasification technologies have been developed for commercial use and installed.

Future Development of Waste Management in China According to the 13th Five-Year Plan
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
Municipal solid waste (MSW) known as trash or garbage consists of food waste, paper, cardboard, plastics, PET, glass, textiles, metals, wood and leather, nappies, slug, ash, etc. are arising from human and animal activities. The rapid development and urbanization of China have resulted in an increasing volume of MSW. So the problem of MSW management has become a major social problem, but one the other hand, because of their intrinsic properties, MSW are often reusable and may be considered a resource for energy recovery. The delivering quantity of household waste averages 179 million tons in China, and the amount of untreated MSW over the years has reached 7 billion tons.

How to Optimize Recycling Rates Using Waste Incineration
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
The improvement of recycling and reuse of waste is becoming more and more important and it is generally preferred compared to waste incineration. In fact, the incineration of waste is often considered the last alternative when recycling of a certain waste fraction is technically not possible or there is simply no market for the corresponding fraction of the waste. But instead of considering waste incineration as being contradictory to recycling, it may also be considered as an alternative way to achieve higher recycling rates. The main goal of waste to energy is the use of the chemical energy contained in the carbon and drogen, and transfer this into thermal energy. But all other elements contained in the waste will of course also be found in the various residue streams leaving the plant. For these residue streams there are possibilities for further treatment, enabling Separation of certain elements, improvement of the quality of a residue stream to allow re-use on the market or even potential for the preparation of a new product.

Disposal of Carbon Fiber Reinforced Polymers – Problems During Recycling and Impacts on Waste Incineration
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
Carbon fiber reinforced polymers (CFRPs) are becoming increasingly more ubiquitous in our daily lives. CFRPs are composite materials, consisting of carbon fibers with high mechanical capabilities and a formative polymer matrix. The production process of carbon fibers is complex and energy intensive, thus making CFRPs more expensive than comparable metal materials. The advantage of CFRPs lies in their weight; metal materials of the same properties weight up to five times as much. This makes CFRPs especially valuable in areas, where weight and cost directly correlate, but high mechanical properties are still essential.

Wrong Tracks in Waste Management
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
Waste Management is ubiquitous in our everyday life. Economic prosperity and the abundance of materialistic goods imply the generation of waste. In parallel the public awareness for environmentally sound solutions in the field of waste management is raising. This context imposes challenging conditions for political leaders. Often politicians are confronted to take decisions about concepts or investments in waste management without independent expertise. They are approached by vendors of waste treatment technologies or concepts, claiming high environmental and energetic performance, combined with profitable cost – benefit rates.

Development of Waste-to-Energy Projects
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
The first objective of waste management must always be to protect society and the health of individuals from harmful substances contained in the waste. Along the various methods around the globe with which waste has been treated the waste pyramid or waste management hierarchy has become widely accepted as the governing principle for waste management in modern societies. These principles have also been integrated in the European waste framework directive 2008/98/EC. At the bottom of the pyramid lays disposal of waste, meaning it is the least favourable option to treat a primary waste. However this does not mean implementing the waste pyramid prohibits disposal. It merely means that before disposal all other meaningful options are exhausted, and the quantity has been minimized.

The Market for Mechanical Biological Waste Treatment Plants in Europe
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
Both the number and capacities of mechanical biological treatment plants (MBT plants) have increased significantly in the past years. In late 2015, about 490 MBT plants were active in Europe, reaching a disposal capacity of circa 47 million annual tons. However, despite its steady growth, the MBT market showed volatility. The market development peaked in 2005/2006, with the commissioning of about 80 plants with a capacity of circa 9 million annual tons. In 2015, about 13 new facilities with a capacity of around 2.2 million annual tons went online. The MBT market has also shifted geographically, because the European countries have started implementing the EU Landfill Directive in different years. After MBT plants had mainly been constructed in Southern Europe, Germany and Austria before 2006, investments shifted towards the UK and more recently, towards Eastern Europe. In the coming years, an ambivalent development is expected. Whereas further MBT plants will be constructed in countries still sending large shares of their MSW to landfills, MBT technology will experience increasing pressure in the countries with low landfilling shares.

The Added Value of the Balance Method for Waste-to-Energy Operators and National Authorities
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
Different directives of the European Union may require operators of Waste to Energy WTE plants to monitor the composition of their waste feed with respect to the Content of biomass and fossil organic matter. The mass fractions of both materials are not only of relevance for the amount of fossil and thus climate relevant CO2 emissions of the plant, but also for the ratio of renewable energy generated, as biomass in wastes is considered as renewable energy source.

Plastics Recycling and Energy Recovery Activities in Poland – Current Status and Development Prospects –
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
The waste disposal system in Poland is one of the least advanced in Europe. Despite great efforts over the last 20 years municipal waste landfilling has only reduced from 95 percent in 1991 to 73 percent in 2010. This still means that millions of tonnes of post-consumer waste continue to be landfilled.

Development of Waste Management in the Arab Region
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
The Department of Waste Management and Material Flow of the University of Rostock has been active in Arab countries for over 20 years, and has initiated, carried out and scientifically supervised numerous projects. Waste management and material flow is an important theme in the field of German development cooperation in the MENA regions and has gained in significance in recent years.

<  1  2  3  4 . . . . >


BEST PRACTICE

Waste-to-Energy (WtE) facility

Renergia, a brand new Waste-to-Energy (WtE) facility opened in Canton Lucerne, shows that Waste-to-Energy can provide reliable heat for industries.

Category: Incineration / Waste-to-Energy plant
Executing firm: Renergia Zentralschweiz AG

MBT Ljubljana, Slovenia

In Slovenia arises one of the largest and most modern waste treatment plants in Europe.

Category: Recycling / MBT
Executing firm: STRABAG AG

Flue Gas Cleaning

The final unit of the incineration plant is one of the most important parts as it has the objective of cleaning the air pollutants produced.

Category: Incineration
Executing firm: ete.a - Ingenieurgesellschaft für Energie– und Umweltengineering & Beratung mbH

Batch Dry Fermentation

The biogas produced from the waste can be converted in a CHP to electrical and thermal energy or fed as processed bio-methane into the natural gas grid or used as fuel (CNG).

Category: Recycling / Fermentation
Executing firm: BEKON Energy Technologies Co. & KG

MBT Warsaw, Poland

The Bio-Dry™ system is a static, aerated and flexibly enclosed reactor for the biological drying of various solid waste matters containing some biodegradable contents.

Category: Recycling / MBT
Executing firm: Convaero GmbH

 
  Advertise with us | Sitemap | Contact | Legal © 2009, WtERT GmbH